【RNN练习】LSTM-火灾温度预测

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前期准备工作

import torch.nn.functional as F
import numpy as np
import pandas as pd
import torch
from torch import nn

1. 导入数据

data = pd.read_csv(r"D:\Personal Data\Learning Data\DL Learning Data\LSTM\woodpine2.csv")
data

在这里插入图片描述

2. 数据可视化

import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi'] = 500 #分辨率
fig, ax = plt.subplots(1,3,constrained_layout = True, figsize = (14, 3))

sns.lineplot(data = data["Tem1"], ax = ax[0])
sns.lineplot(data=data['CO 1'], ax = ax[1])
sns.lineplot(data=data["Soot 1"], ax = ax[2])
plt.show()

在这里插入图片描述

dataFrame = data.iloc[:,1:]
dataFrame

在这里插入图片描述

二、构建数据集

1. 数据集预处理

from sklearn.preprocessing import MinMaxScaler

dataFrame = data.iloc[:,1:].copy()
sc = MinMaxScaler(feature_range=(0,1))   #将数据归一化
for i in ['CO 1', 'Soot 1', 'Tem1']:
    dataFrame[i] = sc.fit_transform(dataFrame[i].values.reshape(-1,1))

dataFrame.shape

输出:

(5948, 3)

2. 设置X、y

width_X = 8
width_y = 1

## 取前8个时间段的Tem1、CO 1、Soot 1为X,第9个时间段的Tem1为y。
X = []
y = []

in_start = 0
for _,_ in data.iterrows():
    in_end = in_start + width_X
    out_end = in_end + width_y

    if out_end < len(dataFrame):
        X_ = np.array(dataFrame.iloc[in_start:in_end, ])
        y_ = np.array(dataFrame.iloc[in_end: out_end, 0])

        X.append(X_)
        y.append(y_)
    in_start += 1

X = np.array(X)
y = np.array(y).reshape(-1,1,1)
X.shape, y.shape

输出:

((5939, 8, 3), (5939, 1, 1))

检查数据集是否有空值

#检查数据集是否有空值
print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

3. 划分数据集

X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch.float32)
 
X_test  = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test  = torch.tensor(np.array(y[5000:]), dtype=torch.float32)
X_train.shape, y_train.shape

输出:

(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 1]))
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
                      batch_size=64, 
                      shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
                     batch_size=64, 
                     shuffle=False)

三、模型训练

1. 构建模型

class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()
        self.lstm0 = nn.LSTM(input_size=3 ,hidden_size=320, 
                             num_layers=1, batch_first=True)
        self.lstm1 = nn.LSTM(input_size=320 ,hidden_size=320, 
                             num_layers=1, batch_first=True)
        self.fc0 = nn.Linear(320, 1)
        # self.fc1 = nn.Sequential(nn.Linear(300, 2))
 
    def forward(self, x):
        #如果不传入h0和c0,pytorch会将其初始化为0
        out, hidden1 = self.lstm0(x) 
        out, _ = self.lstm1(out, hidden1) 
        out = self.fc0(out) 
        return out[:, -1:, :]   #取2个预测值,否则经过lstm会得到8*2个预测 
model = model_lstm()
model
 

输出:

model_lstm(
  (lstm0): LSTM(3, 320, batch_first=True)
  (lstm1): LSTM(320, 320, batch_first=True)
  (fc0): Linear(in_features=320, out_features=1, bias=True)
)
model(torch.rand(30,8,3)).shape

输出:

torch.Size([30, 1, 1])

2.定义训练函数


# 训练循环
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None):
    size = len(train_dl.dataset)  
    num_batches = len(train_dl)   
    train_loss = 0  # 初始化训练损失和正确率
    
    for x, y in train_dl:  
        x, y = x.to(device), y.to(device)
        
        # 计算预测误差
        #pred = model(x)
        pred = model(x)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距
        
        # 反向传播
        opt.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        opt.step()       # 每一步自动更新
        
        # 记录loss
        train_loss += loss.item()
    if lr_scheduler is not None:
        lr_scheduler.step()
        print("learning rate = ", opt.param_groups[0]['lr'])
    train_loss /= num_batches
    return train_loss

3. 定义测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目
    test_loss = 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for x, y in dataloader:
            
            x, y = x.to(device), y.to(device)
            
            # 计算loss
            y_pred = model(x)
            loss        = loss_fn(y_pred, y)
            test_loss += loss.item()
        
    test_loss /= num_batches
    return test_loss

4. 正式训练模型

#设置GPU训练
import torch
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

输出:

device(type='cuda')
#训练模型
model = model_lstm()
model = model.to(device)
loss_fn    = nn.MSELoss() # 创建损失函数
learn_rate = 1e-1   # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate,weight_decay=1e-4)
epochs     = 150
train_loss = []
test_loss  = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt,epochs, last_epoch=-1) 
best_val =[0, 1e5]
for epoch in range(epochs):
    model.train()
    epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)
 
    model.eval()
    epoch_test_loss = test(test_dl, model, loss_fn)
    if best_val[1] >  epoch_test_loss:
        best_val =[epoch, epoch_test_loss]
        best_model_wst = copy.deepcopy(model.state_dict())
 
    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_loss:{:.6f}, Test_loss:{:.6f}')
    print(template.format(epoch+1, epoch_train_loss,  epoch_test_loss))
print("*"*20, 'Done', "*"*20)

输出:

learning rate =  0.09998903417374227
Epoch: 1, Train_loss:0.001263, Test_loss:0.012446
learning rate =  0.09995614150494292
Epoch: 2, Train_loss:0.014234, Test_loss:0.012052
learning rate =  0.09990133642141358
Epoch: 3, Train_loss:0.013899, Test_loss:0.011644
learning rate =  0.09982464296247522
Epoch: 4, Train_loss:0.013514, Test_loss:0.011209
learning rate =  0.09972609476841367
Epoch: 5, Train_loss:0.013065, Test_loss:0.010731
learning rate =  0.0996057350657239
Epoch: 6, Train_loss:0.012539, Test_loss:0.010204
learning rate =  0.09946361664814941
Epoch: 7, Train_loss:0.011923, Test_loss:0.009617
learning rate =  0.09929980185352524
Epoch: 8, Train_loss:0.011208, Test_loss:0.008970
learning rate =  0.09911436253643444
Epoch: 9, Train_loss:0.010392, Test_loss:0.008263
learning rate =  0.09890738003669028
Epoch:10, Train_loss:0.009476, Test_loss:0.007508
learning rate =  0.098678945143658
Epoch:11, Train_loss:0.008475, Test_loss:0.006716
learning rate =  0.09842915805643156
Epoch:12, Train_loss:0.007412, Test_loss:0.005910
learning rate =  0.09815812833988291
Epoch:13, Train_loss:0.006323, Test_loss:0.005112
learning rate =  0.09786597487660335
Epoch:14, Train_loss:0.005249, Test_loss:0.004352
learning rate =  0.09755282581475769
Epoch:15, Train_loss:0.004237, Test_loss:0.003654
learning rate =  0.09721881851187407
Epoch:16, Train_loss:0.003325, Test_loss:0.003036
learning rate =  0.0968640994745946
Epoch:17, Train_loss:0.002540, Test_loss:0.002509
learning rate =  0.09648882429441258
Epoch:18, Train_loss:0.001895, Test_loss:0.002082
learning rate =  0.09609315757942503
Epoch:19, Train_loss:0.001388, Test_loss:0.001740
learning rate =  0.09567727288213004
Epoch:20, Train_loss:0.001005, Test_loss:0.001479
learning rate =  0.09524135262330098
Epoch:21, Train_loss:0.000725, Test_loss:0.001283
learning rate =  0.09478558801197065
Epoch:22, Train_loss:0.000526, Test_loss:0.001138
learning rate =  0.09431017896156073
Epoch:23, Train_loss:0.000388, Test_loss:0.001033
learning rate =  0.09381533400219318
Epoch:24, Train_loss:0.000294, Test_loss:0.000955
learning rate =  0.09330127018922194
Epoch:25, Train_loss:0.000230, Test_loss:0.000900
learning rate =  0.09276821300802535
Epoch:26, Train_loss:0.000188, Test_loss:0.000859
learning rate =  0.09221639627510077
Epoch:27, Train_loss:0.000159, Test_loss:0.000829
learning rate =  0.09164606203550499
Epoch:28, Train_loss:0.000139, Test_loss:0.000806
learning rate =  0.09105746045668521
Epoch:29, Train_loss:0.000126, Test_loss:0.000789
learning rate =  0.09045084971874738
Epoch:30, Train_loss:0.000117, Test_loss:0.000775
learning rate =  0.08982649590120982
Epoch:31, Train_loss:0.000110, Test_loss:0.000765
learning rate =  0.089184672866292
Epoch:32, Train_loss:0.000105, Test_loss:0.000755
learning rate =  0.08852566213878947
Epoch:33, Train_loss:0.000102, Test_loss:0.000749
learning rate =  0.08784975278258783
Epoch:34, Train_loss:0.000100, Test_loss:0.000743
learning rate =  0.08715724127386973
Epoch:35, Train_loss:0.000098, Test_loss:0.000738
learning rate =  0.08644843137107058
Epoch:36, Train_loss:0.000096, Test_loss:0.000731
learning rate =  0.08572363398164018
Epoch:37, Train_loss:0.000095, Test_loss:0.000727
learning rate =  0.0849831670256683
Epoch:38, Train_loss:0.000094, Test_loss:0.000724
learning rate =  0.08422735529643445
Epoch:39, Train_loss:0.000094, Test_loss:0.000720
learning rate =  0.08345653031794292
Epoch:40, Train_loss:0.000093, Test_loss:0.000717
learning rate =  0.0826710301995053
Epoch:41, Train_loss:0.000093, Test_loss:0.000712
learning rate =  0.0818711994874345
Epoch:42, Train_loss:0.000092, Test_loss:0.000708
learning rate =  0.08105738901391554
Epoch:43, Train_loss:0.000092, Test_loss:0.000705
learning rate =  0.08022995574311877
Epoch:44, Train_loss:0.000092, Test_loss:0.000701
learning rate =  0.07938926261462367
Epoch:45, Train_loss:0.000092, Test_loss:0.000698
learning rate =  0.07853567838422161
Epoch:46, Train_loss:0.000091, Test_loss:0.000694
learning rate =  0.07766957746216722
Epoch:47, Train_loss:0.000091, Test_loss:0.000692
learning rate =  0.07679133974894985
Epoch:48, Train_loss:0.000091, Test_loss:0.000688
learning rate =  0.07590135046865654
Epoch:49, Train_loss:0.000091, Test_loss:0.000683
learning rate =  0.07500000000000002
Epoch:50, Train_loss:0.000091, Test_loss:0.000681
learning rate =  0.07408768370508578
Epoch:51, Train_loss:0.000091, Test_loss:0.000676
learning rate =  0.07316480175599312
Epoch:52, Train_loss:0.000090, Test_loss:0.000672
learning rate =  0.0722317589592464
Epoch:53, Train_loss:0.000090, Test_loss:0.000668
learning rate =  0.07128896457825366
Epoch:54, Train_loss:0.000090, Test_loss:0.000666
learning rate =  0.07033683215379004
Epoch:55, Train_loss:0.000090, Test_loss:0.000662
learning rate =  0.06937577932260518
Epoch:56, Train_loss:0.000090, Test_loss:0.000658
learning rate =  0.06840622763423394
Epoch:57, Train_loss:0.000090, Test_loss:0.000654
learning rate =  0.0674286023660908
Epoch:58, Train_loss:0.000090, Test_loss:0.000650
learning rate =  0.0664433323369292
Epoch:59, Train_loss:0.000090, Test_loss:0.000646
learning rate =  0.06545084971874741
Epoch:60, Train_loss:0.000090, Test_loss:0.000643
learning rate =  0.06445158984722361
Epoch:61, Train_loss:0.000090, Test_loss:0.000639
learning rate =  0.06344599103076332
Epoch:62, Train_loss:0.000090, Test_loss:0.000635
learning rate =  0.06243449435824276
Epoch:63, Train_loss:0.000089, Test_loss:0.000631
learning rate =  0.06141754350553282
Epoch:64, Train_loss:0.000089, Test_loss:0.000627
learning rate =  0.060395584540888
Epoch:65, Train_loss:0.000089, Test_loss:0.000623
learning rate =  0.05936906572928627
Epoch:66, Train_loss:0.000089, Test_loss:0.000620
learning rate =  0.05833843733580514
Epoch:67, Train_loss:0.000089, Test_loss:0.000615
learning rate =  0.05730415142812061
Epoch:68, Train_loss:0.000089, Test_loss:0.000612
learning rate =  0.056266661678215237
Epoch:69, Train_loss:0.000089, Test_loss:0.000608
learning rate =  0.055226423163382714
Epoch:70, Train_loss:0.000089, Test_loss:0.000604
learning rate =  0.0541838921666158
Epoch:71, Train_loss:0.000089, Test_loss:0.000601
learning rate =  0.0531395259764657
Epoch:72, Train_loss:0.000090, Test_loss:0.000597
learning rate =  0.05209378268646001
Epoch:73, Train_loss:0.000090, Test_loss:0.000593
learning rate =  0.051047120994167874
Epoch:74, Train_loss:0.000090, Test_loss:0.000590
learning rate =  0.050000000000000024
Epoch:75, Train_loss:0.000090, Test_loss:0.000587
learning rate =  0.048952879005832194
Epoch:76, Train_loss:0.000090, Test_loss:0.000583
learning rate =  0.04790621731354004
Epoch:77, Train_loss:0.000090, Test_loss:0.000579
learning rate =  0.04686047402353437
Epoch:78, Train_loss:0.000090, Test_loss:0.000576
learning rate =  0.045816107833384245
Epoch:79, Train_loss:0.000090, Test_loss:0.000573
learning rate =  0.044773576836617354
Epoch:80, Train_loss:0.000091, Test_loss:0.000569
learning rate =  0.04373333832178481
Epoch:81, Train_loss:0.000091, Test_loss:0.000567
learning rate =  0.042695848571879455
Epoch:82, Train_loss:0.000091, Test_loss:0.000563
learning rate =  0.0416615626641949
Epoch:83, Train_loss:0.000091, Test_loss:0.000561
learning rate =  0.040630934270713785
Epoch:84, Train_loss:0.000091, Test_loss:0.000558
learning rate =  0.039604415459112044
Epoch:85, Train_loss:0.000092, Test_loss:0.000555
learning rate =  0.03858245649446723
Epoch:86, Train_loss:0.000092, Test_loss:0.000552
learning rate =  0.03756550564175728
Epoch:87, Train_loss:0.000092, Test_loss:0.000550
learning rate =  0.03655400896923674
Epoch:88, Train_loss:0.000093, Test_loss:0.000548
learning rate =  0.03554841015277642
Epoch:89, Train_loss:0.000093, Test_loss:0.000545
learning rate =  0.03454915028125264
Epoch:90, Train_loss:0.000094, Test_loss:0.000543
learning rate =  0.03355666766307085
Epoch:91, Train_loss:0.000094, Test_loss:0.000541
learning rate =  0.03257139763390926
Epoch:92, Train_loss:0.000095, Test_loss:0.000539
learning rate =  0.031593772365766125
Epoch:93, Train_loss:0.000095, Test_loss:0.000538
learning rate =  0.030624220677394863
Epoch:94, Train_loss:0.000096, Test_loss:0.000536
learning rate =  0.02966316784621
Epoch:95, Train_loss:0.000096, Test_loss:0.000535
learning rate =  0.02871103542174638
Epoch:96, Train_loss:0.000097, Test_loss:0.000534
learning rate =  0.02776824104075365
Epoch:97, Train_loss:0.000098, Test_loss:0.000533
learning rate =  0.026835198244006937
Epoch:98, Train_loss:0.000098, Test_loss:0.000532
learning rate =  0.02591231629491424
Epoch:99, Train_loss:0.000099, Test_loss:0.000531
learning rate =  0.024999999999999998
Epoch:100, Train_loss:0.000100, Test_loss:0.000531
learning rate =  0.024098649531343507
Epoch:101, Train_loss:0.000101, Test_loss:0.000530
learning rate =  0.023208660251050187
Epoch:102, Train_loss:0.000102, Test_loss:0.000530
learning rate =  0.02233042253783281
Epoch:103, Train_loss:0.000103, Test_loss:0.000530
learning rate =  0.021464321615778426
Epoch:104, Train_loss:0.000104, Test_loss:0.000530
learning rate =  0.020610737385376356
Epoch:105, Train_loss:0.000105, Test_loss:0.000531
learning rate =  0.019770044256881267
Epoch:106, Train_loss:0.000106, Test_loss:0.000531
learning rate =  0.018942610986084494
Epoch:107, Train_loss:0.000107, Test_loss:0.000532
learning rate =  0.018128800512565522
Epoch:108, Train_loss:0.000108, Test_loss:0.000533
learning rate =  0.01732896980049475
Epoch:109, Train_loss:0.000110, Test_loss:0.000535
learning rate =  0.016543469682057093
Epoch:110, Train_loss:0.000111, Test_loss:0.000536
learning rate =  0.01577264470356557
Epoch:111, Train_loss:0.000112, Test_loss:0.000537
learning rate =  0.015016832974331734
Epoch:112, Train_loss:0.000113, Test_loss:0.000539
learning rate =  0.014276366018359849
Epoch:113, Train_loss:0.000115, Test_loss:0.000541
learning rate =  0.01355156862892944
Epoch:114, Train_loss:0.000116, Test_loss:0.000544
learning rate =  0.012842758726130289
Epoch:115, Train_loss:0.000118, Test_loss:0.000546
learning rate =  0.012150247217412192
Epoch:116, Train_loss:0.000119, Test_loss:0.000549
learning rate =  0.011474337861210548
Epoch:117, Train_loss:0.000120, Test_loss:0.000552
learning rate =  0.010815327133708018
Epoch:118, Train_loss:0.000122, Test_loss:0.000555
learning rate =  0.010173504098790198
Epoch:119, Train_loss:0.000123, Test_loss:0.000557
learning rate =  0.009549150281252639
Epoch:120, Train_loss:0.000124, Test_loss:0.000561
learning rate =  0.008942539543314802
Epoch:121, Train_loss:0.000126, Test_loss:0.000564
learning rate =  0.008353937964495033
Epoch:122, Train_loss:0.000127, Test_loss:0.000567
learning rate =  0.00778360372489925
Epoch:123, Train_loss:0.000128, Test_loss:0.000570
learning rate =  0.007231786991974674
Epoch:124, Train_loss:0.000129, Test_loss:0.000572
learning rate =  0.006698729810778079
Epoch:125, Train_loss:0.000130, Test_loss:0.000575
learning rate =  0.006184665997806824
Epoch:126, Train_loss:0.000131, Test_loss:0.000578
learning rate =  0.005689821038439266
Epoch:127, Train_loss:0.000132, Test_loss:0.000580
learning rate =  0.005214411988029369
Epoch:128, Train_loss:0.000132, Test_loss:0.000582
learning rate =  0.004758647376699034
Epoch:129, Train_loss:0.000133, Test_loss:0.000585
learning rate =  0.004322727117869964
Epoch:130, Train_loss:0.000133, Test_loss:0.000587
learning rate =  0.00390684242057497
Epoch:131, Train_loss:0.000134, Test_loss:0.000588
learning rate =  0.0035111757055874336
Epoch:132, Train_loss:0.000134, Test_loss:0.000590
learning rate =  0.003135900525405428
Epoch:133, Train_loss:0.000135, Test_loss:0.000591
learning rate =  0.002781181488125951
Epoch:134, Train_loss:0.000135, Test_loss:0.000592
learning rate =  0.002447174185242324
Epoch:135, Train_loss:0.000135, Test_loss:0.000593
learning rate =  0.0021340251233966383
Epoch:136, Train_loss:0.000135, Test_loss:0.000594
learning rate =  0.001841871660117095
Epoch:137, Train_loss:0.000135, Test_loss:0.000594
learning rate =  0.0015708419435684464
Epoch:138, Train_loss:0.000135, Test_loss:0.000595
learning rate =  0.0013210548563419857
Epoch:139, Train_loss:0.000135, Test_loss:0.000595
learning rate =  0.0010926199633097212
Epoch:140, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0008856374635655696
Epoch:141, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0007001981464747509
Epoch:142, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0005363833518505835
Epoch:143, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0003942649342761118
Epoch:144, Train_loss:0.000135, Test_loss:0.000596
learning rate =  0.0002739052315863355
Epoch:145, Train_loss:0.000135, Test_loss:0.000597
learning rate =  0.0001753570375247815
Epoch:146, Train_loss:0.000135, Test_loss:0.000597
learning rate =  9.866357858642206e-05
Epoch:147, Train_loss:0.000135, Test_loss:0.000597
learning rate =  4.3858495057080846e-05
Epoch:148, Train_loss:0.000135, Test_loss:0.000597
learning rate =  1.0965826257725021e-05
Epoch:149, Train_loss:0.000135, Test_loss:0.000597
learning rate =  0.0
Epoch:150, Train_loss:0.000135, Test_loss:0.000597
******************** Done ********************

四、模型评估

1. LOSS图

#LOSS图
# 支持中文
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
 
plt.figure(figsize=(5, 3),dpi=120)
 
plt.plot(train_loss    , label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
 
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

在这里插入图片描述

2. 调用模型进行预测

model.load_state_dict(best_model_wst)
model.to("cpu")
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))                    # 测试集输入模型进行预测
y_test_1 = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
 
plt.figure(figsize=(5, 3),dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
 
plt.title('Title')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()
 

在这里插入图片描述

3. R2值评估

from sklearn import metrics
"""
RMSE :均方根误差  ----->  对均方误差开方
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量
"""
RMSE_lstm  = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm    = metrics.r2_score(predicted_y_lstm_one, y_test_1)
 
print('均方根误差: %.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

输出:

均方根误差: 6.53662
R2: 0.85083

五、总结

在数据预测前,数据预处理极为关键,包含数据去重、去空值。在设置迭代次数时,可适量缩小迭代次数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/754893.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[Leetcode刷题] - 栅栏涂漆DP类问题

题目描述 这一类题目通常会问给定一组房子n和一组染料k去涂漆&#xff0c;并且会加入限制条件比如&#xff1a;某种颜色只能使用1次&#xff0c;相相邻房子不能涂同一种颜色&#xff0c;或者最多不能超过连续3个房子涂想通过颜色等等&#xff0c;让我们列举所有可能性总和&…

如何评估CRM客户系统的功能是否满足助贷机构的需求?

评估 CRM 客户系统的功能是否满足助贷机构的需求&#xff0c;可以从以下几个方面入手&#xff1a; 1. 客户信息管理 - 检查系统能否全面、准确地记录客户的基本信息&#xff0c;如个人身份、财务状况、贷款需求等。 - 确认是否支持多维度的客户分类和标签功能&#xff0c;以…

STM32第七课:KQM6600空气质量传感器

文章目录 需求一、KQM6600模块及接线方法二、模块配置流程1.环境2.配置时钟和IO3.配置串口初始化&#xff0c;使能以及中断4.中断函数 三、数据处理四、关键代码总结 需求 能够在串口实时显示当前的VOC&#xff08;挥发性有机化合物&#xff09;&#xff0c;甲醛和Co2浓度。 …

css 流动边框

一、背景流动边框 实现原理&#xff1a; 用背景进行旋转&#xff0c;超出我们想显示的范围则hidden&#xff0c;就有以上的效果&#xff0c;可以用after或者before元素来实现也可以。 <!DOCTYPE html> <html lang"en"><head><meta charset&qu…

【开发环境】MacBook M2安装git并拉取gitlab项目,解决gitlab出现Access Token使用无效的方法

文章目录 安装Homebrew安装git打开IDEA配置git打开IDEA拉取项目 安装Homebrew /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"在iTerm等命令行工具打开后&#xff0c;输入上面的命令 之后根据中文提示完成Homebrew的下载…

web项目打包成可以离线跑的exe软件

目录 引言打开PyCharm安装依赖创建 Web 应用运行应用程序打包成可执行文件结语注意事项 引言 在开发桌面应用程序时&#xff0c;我们经常需要将网页集成到应用程序中。Python 提供了多种方法来实现这一目标&#xff0c;其中 pywebview 是一个轻量级的库&#xff0c;它允许我们…

PyScript:在浏览器中释放Python的强大

PyScript&#xff1a;Python代码&#xff0c;直接在网页上运行。- 精选真开源&#xff0c;释放新价值。 概览 PyScript是一个创新的框架&#xff0c;它打破了传统编程环境的界限&#xff0c;允许开发者直接在浏览器中使用Python语言来创建丰富的网络应用。结合了HTML界面、Pyo…

把飞书云文档变成HTML邮件:问题挑战与解决历程

一、背景 云文档转HTML邮件 基于公司内部的飞书办公套件&#xff0c;早在去年6月&#xff0c;我们就建设了将飞书云文档转译成HTML邮件的能力&#xff0c;方便同学们在编写邮件文档和发送邮件时&#xff0c;都能有较好的体验和较高的效率。 当下问题 要被邮件客户端识别&am…

【蓝桥杯省赛真题46】python数字币统计 中小学青少年组蓝桥杯比赛 算法思维python编程省赛真题解析

目录 python数字币统计 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python数字币统计 第十四届蓝桥杯青少年组python比赛省赛真题 一、题目…

Spring Boot结合FFmpeg实现视频会议系统视频流处理与优化

在构建高效稳定的视频会议系统时,实时视频流的处理和优化是开发者面临的核心挑战之一。这不仅仅是简单的视频数据传输,更涉及到一系列复杂的技术问题,需要我们深入分析和有效解决。 高并发与实时性要求: 视频会议系统通常需要支持多人同时进行视频通话,这就意味着系统需要…

ONLYOFFICE8.1版本桌面编辑器——功能测评

一、编辑DOCX 相信大家都有写word文档的经历&#xff0c;不知道大家是不是跟我一样&#xff0c;感觉做一个word不难&#xff0c;但想做好一个word却很麻烦&#xff0c;功能太多&#xff0c;看的人眼花缭乱&#xff0c;有时候一个功能要找很久&#xff0c;甚至有的功能用一辈子都…

Matlab/simulink三段式距离/低阻抗保护

距离1段仿真波形如下所示 距离2段仿真波形如下所示 距离3段仿真波形如下所示

独立开发者系列(12)——下单与支付

做业务有个绕不开的业务逻辑&#xff0c;就是支付。这里总结一个基础的支付电商逻辑闭环流程&#xff0c;完成支付基础体系的实现。这里假定我们要实现的是一个独立的电商平台上允许用户在平台充值&#xff0c;其他的类似多多购物或者淘宝购物的流程逻辑。 数据表结构的逻辑设…

搭建Renesas R7FA8D1BHECBD-BTB的开发调试环境(DAP-LINK: N32G45XVL-STB)

目录 概述 1 软硬件 1.1 软硬件环境信息 1.2 开发板信息 1.3 调试器信息 2 FSP和KEIL产生测试项目 2.1 FSP生成项目 2.2 Keil中配置 3 硬件连接框图 4 一个测试案例 4.1 功能介绍 4.2 定时器函数 5 测试 搭建Renesas R7FA8D1BHECBD-BTB的开发调试环境&#xff08…

【漏洞复现】I doc view——任意文件读取

声明&#xff1a;本文档或演示材料仅供教育和教学目的使用&#xff0c;任何个人或组织使用本文档中的信息进行非法活动&#xff0c;均与本文档的作者或发布者无关。 文章目录 漏洞描述漏洞复现测试工具 漏洞描述 I doc view 在线文档预览是一个用于查看、编辑、管理文档的工具…

LabVIEW材料样本结构缺陷检测

本文介绍了一种基于LabVIEW的实验室振动特性分析测试装置&#xff0c;通过分析振动特性来检测结构缺陷。文章详细描述了具体案例、硬件型号、工作原理、软件功能以及注意事项。 硬件型号 振动传感器&#xff1a;PCB Piezotronics 352C33加速度计 数据采集卡&#xff1a;NI PXI…

天气网站爬虫及可视化

摘要&#xff1a;随着互联网的快速发展&#xff0c;人们对天气信息的需求也越来越高。本论文基于Python语言&#xff0c;设计并实现了一个天气网站爬虫及可视化系统。该系统通过网络爬虫技术从多个天气网站上获取实时的天气数据&#xff0c;并将数据进行清洗和存储。同时&#…

Windows下activemq集群配置(broker-network)

1.activemq版本信息 activemq&#xff1a;apache-activemq-5.18.4 2.activemq架构 3.activemq集群配置 activemq集群配置基于Networks of Brokers 这种HA方案的优点&#xff1a;是占用的节点数更少(只需要2个节点),而且2个broker都可以响应消息的接收与发送。不足&#xff…

下载旧版本vscode及扩展,离线下载远程linux服务器插件

背景 工作的内网没有网络&#xff0c;无法使用网络来下载插件和vscode软件&#xff0c;且有远程linux服务器需求&#xff0c;linux服务器中lib相关库比较旧且无法更新&#xff0c;所以需要选择一个旧版本的vscode&#xff0c;相应插件也需要选择旧版本的 旧版本vscode下载 没…

JavaWeb——MySQL:事务的简单学习

前面学习完了数据库增删查改的SQL语言&#xff0c;约束&#xff0c;数据库设计&#xff0c;以及多表查询&#xff0c;再学完事务就达到初级工程师的水平了。 6. 事务 6.1 概念 事务类似于编程语言的方法&#xff0c;包含一组SQL指令。 事务是不可分割的&#xff1b; 该指令步…